How to use wandb tracking and visualizing machine learning experiments developed
Published on Aug. 22, 2023, 12:14 p.m.
WandB is a tool for tracking and visualizing machine learning experiments developed by Weights & Biases. It provides a centralized dashboard to track hyperparameters, system metrics, and predictions so you can compare models in real time and share your findings. Here is an example of how to get started using wandb in Python:
Install wandb using pip:
pip install wandb
Import the wandb library in your code:
import wandb
Login to your wandb account using your API key:
wandb.login(key="<YOUR-API-KEY>")
Initialize a wandb run:
wandb.init(project="<YOUR-PROJECT-NAME>", name="<YOUR-RUN-NAME>")
Start logging information such as hyperparameters, losses, and accuracy:
wandb.log({"learning_rate": 0.01, "train_loss": 0.1, "val_loss": 0.2, "accuracy": 0.9})
View the results of your experiment in the wandb dashboard.
For more information on how to use wandb, consult the official documentation: https://docs.wandb.ai/.
Note that you need to sign up for an account with Weights & Biases in order to use wandb.
https://docs.wandb.ai/quickstart
要使用命令行通过wandb进行操作,你可以使用wandb命令和不同的参数来实现。以下是一些可能有用的命令和参数:
wandb login:用于登录到你的wandb帐户。
wandb init:在你的脚本中初始化一个wandb运行,包括选择所需的项目,设置名称和配置。
wandb sync:将本地缓存的数据同步到wandb服务器。
wandb sweep:运行一个参数调优实验,自动执行多个不同配置的试验,以找到最佳超参数组合。
wandb agent:使用超参数的建议值从wandb服务器获取下一个要尝试的参数组合。
你可以在命令行中运行wandb –help来获取更多可用的命令和参数的详细信息。通过命令行使用wandb可以很方便地对机器学习实验进行管理,同时避免手动登录和重复执行相同的操作。