In Python, how to remove none data from list

Published on Aug. 22, 2023, 12:15 p.m.

In Python, you can use the filter() function with the None value to remove empty data from a list. There are multiple ways to achieve this using filter().

Here’s an example using the filter() function and the None method:

my_list = ["asas", None, "cfdsgfdas", None, "csdfew"]
filtered_list = list(filter(None, my_list))
print(filtered_list)

The output will be:

['asas', 'cfdsgfdas', 'csdfew']

In this case, we use the filter() function to filter the elements in the list. The None value is passed as the first argument to the filter() function. This will remove any None elements from the list.

You can also write a lambda function to accomplish the same task, like this:

my_list = ["asas", None, "cfdsgfdas", None, "csdfew"]
filtered_list = list(filter(lambda x: x is not None, my_list))
print(filtered_list)

The output will be the same as before:

['asas', 'cfdsgfdas', 'csdfew']

In this case, we use a lambda function to check each element for None. If the element is not None, the lambda function returns True and the element is included in the filtered list.

I hope this helps you remove empty data from a Python list!

To remove empty data from a list using Pandas

To remove empty data from a list using Pandas, you can first convert the list to a Pandas DataFrame, then use the dropna() method to remove any rows with missing values. Here’s an example:

import pandas as pd

my_list = ["asas", None, "cfdsgfdas", None, "csdfew"]
df = pd.DataFrame(my_list, columns=['my_column'])
df.dropna(inplace=True)
filtered_list = df['my_column'].tolist()
print(filtered_list)

In this example, we first create a Pandas DataFrame from the list using the pd.DataFrame() function. We name the column ‘my_column’ just to keep things organized. Then, we use the dropna() method to remove any rows with missing values. Setting the inplace parameter to True ensures that the DataFrame is modified in place. Finally, we convert the remaining column back to a list using the tolist() method.

The output will be the same as in the previous example:

['asas', 'cfdsgfdas', 'csdfew']

I hope this helps you use Pandas to remove empty data from a Python list!

To remove empty data from a Python list using NumPy

To remove empty data from a Python list using NumPy, you can use the delete() function. Here’s an example:

import numpy as np

my_list = ["asas", None, "cfdsgfdas", None, "csdfew"]
my_array = np.array(my_list)
filtered_array = np.delete(my_array, np.where(my_array == None))
filtered_list = filtered_array.tolist()
print(filtered_list)

In this example, we first convert the Python list to a NumPy array using the np.array() function. Then, we use the delete() function to remove any elements in the array that are equal to None. We get the indices of these elements using np.where() and pass them to the delete() function. Finally, we convert the filtered array back to a list using the tolist() method.

The output will be:

['asas', 'cfdsgfdas', 'csdfew']

I hope this helps you use NumPy to remove empty data from a Python list!

Tags: