Data Cleaning with Pandas in Python

Published on Aug. 22, 2023, 12:16 p.m.

Data cleaning with Pandas in Python involves using various methods and functions provided by the Pandas library to clean and preprocess data before analysis or modeling.

Some of the common data cleaning tasks include:

  1. Dropping irrelevant columns using the drop() method.
  2. Handling missing values using methods like fillna() and dropna().
  3. Handling duplicate data using the duplicated() method.
  4. Renaming columns using the rename() method.
  5. Replacing values using the replace() method.
  6. Changing data types using the astype() method.
  7. Handling outliers and anomalies using various methods like z-score, IQR, and boxplot analysis.
  8. Correcting inconsistent data using string methods and regular expressions.
  9. Tidying the data by reshaping it into a more meaningful format.

Here’s a sample code snippet that demonstrates some of these techniques:

import pandas as pd

# load the dataset
df = pd.read_csv('data.csv')

# drop irrelevant columns
df = df.drop(['id', 'timestamp'], axis=1)

# handle missing values
df = df.fillna(df.mean())

# handle duplicates
df = df.drop_duplicates()

# rename columns
df = df.rename(columns={'old_name': 'new_name'})

# replace values
df['column_name'] = df['column_name'].replace({'old_value': 'new_value'})

# change data types
df['column_name'] = df['column_name'].astype('int')

# handle outliers
z_score = (df['column_name'] - df['column_name'].mean()) / df['column_name'].std()
df = df[z_score <= 3]

# correct inconsistent data
df['column_name'] = df['column_name'].str.strip().str.lower()

# tidy the data
df = pd.melt(df, id_vars=['name', 'age'], var_name='variable', value_name='value')

These are just some of the techniques you can use to clean data with Pandas in Python. The specific approach will depend on the nature of your data and the challenges you are trying to address.

Tags: