How to apply a function to each element or column of a pandas DataFrame?
Published on Aug. 22, 2023, 12:17 p.m.
To apply a function to each element or column of a pandas DataFrame, you can use the apply()
method. Here’s an example of applying a function to each element of a DataFrame:
import pandas as pd
# Define a function to multiply a number by 2
def multiply_by_2(x):
return x * 2
# Create a DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
# Apply the function to each element of the DataFrame
result = df.applymap(multiply_by_2)
print(result)
This will output:
A B
0 2 8
1 4 10
2 6 12
In the example above, we created a DataFrame and applied the multiply_by_2
function to each element of the DataFrame using the applymap()
method. This method applies a function to every element of the DataFrame.
To apply a function to each column of a DataFrame, you can use the apply()
method. Here’s an example:
import pandas as pd
# Define a function to calculate the sum of a Series
def sum_series(series):
return series.sum()
# Create a DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
# Apply the function to each column of the DataFrame
result = df.apply(sum_series)
print(result)
This will output:
A 6
B 15
dtype: int64
In the example above, we created a DataFrame and applied the sum_series
function to each column of the DataFrame using the apply()
method. This method applies a function to every column of the DataFrame.
I hope this helps! Let me know if you have any other questions.