How to drop columns in pandas?
Published on Aug. 22, 2023, 12:18 p.m.
To drop columns in a pandas DataFrame, you can use the drop()
method. Here is an example:
import pandas as pd
# Create a DataFrame
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6], 'col3': [7, 8, 9]})
# Drop the col2 column
df = df.drop(['col2'], axis=1)
# Print the new DataFrame
print(df)
In this code, we create a pandas DataFrame df
with three columns. We then call the drop()
method with the argument ['col2']
and axis=1
to remove the col2
column, and assign the result to df
. The resulting DataFrame has only the col1
and col3
columns.
If you want to drop multiple columns, you can pass a list of column names to the drop()
method:
# Drop multiple columns
df = df.drop(['col2', 'col3'], axis=1)
# Print the new DataFrame
print(df)
In this code, we pass ['col2', 'col3']
to the drop()
method to remove both columns, and assign the result to df
.
Note that the drop()
method returns a new DataFrame with the specified columns removed, but does not modify the original DataFrame. If you want to modify the original DataFrame, you can pass the argument inplace=True
:
# Drop the col2 column and modify the original DataFrame
df.drop(['col2'], axis=1, inplace=True)
# Print the new DataFrame
print(df)
This will remove the col2
column from the original DataFrame df
and modify it in place.