How to check if a column contains null values in a Pandas DataFrame?
Published on Aug. 22, 2023, 12:18 p.m.
To check if a column contains null values in a Pandas DataFrame, you can use the isnull()
method along with the any()
method. Here’s an example:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, None], 'B': [4, None, 6]}) # create a DataFrame with columns A and B
is_b_null = df['B'].isnull().any() # check if column 'B' contains any null values
print(is_b_null)
Output:
True
In the example above, is_b_null
stores a boolean value indicating whether column ‘B’ of the DataFrame contains any null values. The isnull()
method returns a boolean mask with True values where the DataFrame is null and False where it is not null. The any()
method returns True if any of the values in the resulting boolean mask are True, indicating that at least one null value exists in the column.
You can also check if any column in the entire DataFrame contains null values by calling the isnull()
method on the entire DataFrame:
is_any_null = df.isnull().values.any() # check if any column in the DataFrame contains any null values
print(is_any_null)
Output:
True
In this example, is_any_null
stores a boolean value indicating whether any column in the DataFrame contains any null values. The isnull()
method returns a boolean mask for the entire DataFrame, and the values.any()
method checks if any of the values in the mask are True.
Overall, checking if one or more columns in a Pandas DataFrame contain null values is straightforward using the isnull()
and any()
methods.