How to use PyTorch Lightning to train a neural network on a custom dataset?
Published on Aug. 22, 2023, 12:19 p.m.
To use PyTorch Lightning to train a neural network on a custom dataset, you can create a custom PyTorch Dataset and use a PyTorch Lightning DataModule to load and preprocess the data. Here’s an example:
- Define your custom PyTorch Dataset that inherits from
torch.utils.data.Dataset
and implements the__getitem__
and__len__
methods to return samples from your dataset. - Create a PyTorch Lightning DataModule that inherits from
pl.LightningDataModule
and implements thetrain_dataloader
,val_dataloader
andtest_dataloader
methods to returnDataLoader
objects that load batches of samples from your dataset. You can also implement any necessary data preprocessing in these methods. - Define your PyTorch Lightning model that inherits from
pl.LightningModule
and implements thetraining_step
,validation_step
,test_step
andconfigure_optimizers
methods. - Instantiate a
pl.Trainer
object and pass in your PyTorch Lightning model and DataModule, then call thefit
method to start training. You can also use thevalidate
andtest
methods to evaluate your model on validation and test data, respectively.
Here’s an example code snippet:
import torch
import pytorch_lightning as pl
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, idx):
sample = self.data[idx]
return sample
def __len__(self):
return len(self.data)
class CustomDataModule(pl.LightningDataModule):
def __init__(self, train_data, val_data, test_data, batch_size):
super().__init__()
self.train_data = CustomDataset(train_data)
self.val_data = CustomDataset(val_data)
self.test_data = CustomDataset(test_data)
self.batch_size = batch_size
def train_dataloader(self):
return DataLoader(self.train_data, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(self.val_data, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.test_data, batch_size=self.batch_size)
class CustomModel(pl.LightningModule):
def __init__(self, input_size, output_size):
super().__init__()
self.fc = torch.nn.Linear(input_size, output_size)