2021-06-14 记事 torchnlp acc计算中忽略pad

Published on Aug. 22, 2023, 12:06 p.m.

2021-06-14 记事

错误UserWarning: SWA is currently only supported every epoch.


lr_scheduler={
    #            'optimizer': optimizer,
               'scheduler': scheduler,
<h1>'reduce_on_plateau': True, # For ReduceLROnPlateau scheduler</h1>
<pre><code>            'interval': 'epoch', #epoch/step 这里使用epoch可以
            'frequency': 1,
            'name':"lr_scheduler",
            'monitor': 'train_loss', #监听数据变化
            'strict': True,
        }
#         return [optimizer], [lr_scheduler]
        return {"optimizer": optimizer, "lr_scheduler": lr_scheduler}
</code></pre>

这个测试写法真是省事

https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#inference-in-production


import pytorch_lightning as pl
from pytorch_lightning.metrics import functional as FM

class ClassificationTask(pl.LightningModule):
<pre><code> def __init__(self, model):
     super().__init__()
     self.model = model

 def training_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self.model(x)
     loss = F.cross_entropy(y_hat, y)
     return loss

 def validation_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self.model(x)
    loss = F.cross_entropy(y_hat, y)
    acc = FM.accuracy(y_hat, y)

    metrics = {'val_acc': acc, 'val_loss': loss}
    self.log_dict(metrics)
    return metrics
#这个测试写法真是省事
 def test_step(self, batch, batch_idx):
    metrics = self.validation_step(batch, batch_idx)
    metrics = {'test_acc': metrics['val_acc'], 'test_loss': metrics['val_loss']}
    self.log_dict(metrics)

 def configure_optimizers(self):
     return torch.optim.Adam(self.model.parameters(), lr=0.02)
</code></pre>

计算 #acc 前需要先做 #softmax #torch

torch.nn.functional.``softmax

torchnlp acc计算中忽略pad


Basic Utilities for PyTorch Natural Language Processing (NLP)

Installation feet

Make sure you have Python 3.6+ and PyTorch 1.0+. You can then install pytorch-nlp using pip:

pip install pytorch-nlp

Or to install the latest code via:

pip install git+https://github.com/PetrochukM/PyTorch-NLP.git

https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/metrics/accuracy.html


import torch

from torchnlp.utils import torch_equals_ignore_index

is_scalar = lambda t: torch.is_tensor(t) and len(t.size()) == 0

[docs]def get_accuracy(targets, outputs, k=1, ignore_index=None):
    """ Get the accuracy top-k accuracy between two tensors.
<pre><code>Args:
  targets (1 - 2D :class:`torch.Tensor`): Target or true vector against which to measure
      saccuracy
  outputs (1 - 3D :class:`torch.Tensor`): Prediction or output vector
  ignore_index (int, optional): Specifies a target index that is ignored

Returns:
  :class:`tuple` consisting of accuracy (:class:`float`), number correct (:class:`int`) and
  total (:class:`int`)

Example:

    &gt;&gt;&gt; import torch
    &gt;&gt;&gt; from torchnlp.metrics import get_accuracy
    &gt;&gt;&gt; targets = torch.LongTensor([1, 2, 3, 4, 5])
    &gt;&gt;&gt; outputs = torch.LongTensor([1, 2, 2, 3, 5])
    &gt;&gt;&gt; accuracy, n_correct, n_total = get_accuracy(targets, outputs, ignore_index=3)
    &gt;&gt;&gt; accuracy
    0.8
    &gt;&gt;&gt; n_correct
    4
    &gt;&gt;&gt; n_total
    5
"""
n_correct = 0.0
for target, output in zip(targets, outputs):
    if not torch.is_tensor(target) or is_scalar(target):
        target = torch.LongTensor([target])

    if not torch.is_tensor(output) or is_scalar(output):
        output = torch.LongTensor([[output]])

    predictions = output.topk(k=min(k, len(output)), dim=0)[0]
    for prediction in predictions:
        if torch_equals_ignore_index(
                target.squeeze(), prediction.squeeze(), ignore_index=ignore_index):
            n_correct += 1
            break

return n_correct / len(targets), int(n_correct), len(targets)
</code></pre>
[docs]def get_token_accuracy(targets, outputs, ignore_index=None):
    """ Get the accuracy token accuracy between two tensors.
<pre><code>Args:
  targets (1 - 2D :class:`torch.Tensor`): Target or true vector against which to measure
      saccuracy
  outputs (1 - 3D :class:`torch.Tensor`): Prediction or output vector
  ignore_index (int, optional): Specifies a target index that is ignored

Returns:
  :class:`tuple` consisting of accuracy (:class:`float`), number correct (:class:`int`) and
  total (:class:`int`)

Example:

    &gt;&gt;&gt; import torch
    &gt;&gt;&gt; from torchnlp.metrics import get_token_accuracy
    &gt;&gt;&gt; targets = torch.LongTensor([[1, 1], [2, 2], [3, 3]])
    &gt;&gt;&gt; outputs = torch.LongTensor([[1, 1], [2, 3], [4, 4]])
    &gt;&gt;&gt; accuracy, n_correct, n_total = get_token_accuracy(targets, outputs, ignore_index=3)
    &gt;&gt;&gt; accuracy
    0.75
    &gt;&gt;&gt; n_correct
    3.0
    &gt;&gt;&gt; n_total
    4.0
 """
n_correct = 0.0
n_total = 0.0
for target, output in zip(targets, outputs):
    if not torch.is_tensor(target) or is_scalar(target):
        target = torch.LongTensor([target])

    if not torch.is_tensor(output) or is_scalar(output):
        output = torch.LongTensor([[output]])

    if len(target.size()) != len(output.size()):
        prediction = output.max(dim=0)[0].view(-1)
    else:
        prediction = output

    if ignore_index is not None:
        mask = target.ne(ignore_index)
        n_correct += prediction.eq(target).masked_select(mask).sum().item()
        n_total += mask.sum().item()
    else:
        n_total += len(target)
        n_correct += prediction.eq(target).sum().item()

return n_correct / n_total, n_correct, n_total
</code></pre>

使用

https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.metrics.html

获取topk的acc 这个在nlp中更加实用
Parameters:
还支持2d很不错
- targets (1 - 2D torch.Tensor) – Target or true vector against which to measure saccuracy
- outputs (1 - 3D torch.Tensor) – Prediction or output vector
- ignore_index (int, optional) – Specifies a target index that is ignored

import torch
from torchnlp.metrics import get_accuracy
targets = torch.LongTensor([1, 2, 3, 4, 5])
outputs = torch.LongTensor([1, 2, 2, 3, 5])
accuracy, n_correct, n_total = get_accuracy(targets, outputs, ignore_index=3)
accuracy
0.8
n_correct
4
n_total
5

Get the accuracy token accuracy between two tensors.

获取acc

import torch
from torchnlp.metrics import get_token_accuracy
targets = torch.LongTensor([[1, 1], [2, 2], [3, 3]])
outputs = torch.LongTensor([[1, 1], [2, 3], [4, 4]])
accuracy, n_correct, n_total = get_token_accuracy(targets, outputs, ignore_index=3)
accuracy
0.75
n_correct
3.0
n_total
4.0

: Cannot compare two tensors on different devices. Got: cpu and cuda:0

<h1>train_loader=DataLoader(traindataset,batch_size=12, shuffle=True, )</h1>
<h1>https://medium.com/curation-corporation/fine-tuning-bart-for-abstractive-text-summarisation-with-fastai2-d7a2ad676a13</h1>
class BartLoss(nn.Module):
    def <strong>init</strong>(self):
        self.criterion = torch.nn.CrossEntropyLoss()
<pre><code>def forward(self, output, target):
    x = F.log_softmax(output, dim=-1)
    norm = (target != 1).data.sum()
    print(x.contiguous().view(-1, x.size(-1)).shape, target.contiguous().view(-1).shape)
    return self.criterion(x.contiguous().view(-1, x.size(-1)), target.contiguous().view(-1)) / norm
</code></pre>
class NlpMetrics(nn.Module):
    def <strong>init</strong>(self,device="cpu"):
        super().<strong>init</strong>()
<h1>self.criterion = torch.nn.CrossEntropyLoss()</h1>
<pre><code>    self.device=device
    self.is_scalar = lambda t: torch.is_tensor(t) and len(t.size()) == 0
def torch_equals_ignore_index(self,tensor, tensor_other, ignore_index=None):
    """
    Compute ``torch.equal`` with the optional mask parameter.

    Args:
        ignore_index (int, optional): Specifies a ``tensor`` index that is ignored.

    Returns:
        (bool) Returns ``True`` if target and prediction are equal.
    """
    if ignore_index is not None:
        assert tensor.size() == tensor_other.size()
        mask_arr = tensor.ne(ignore_index)
        tensor = tensor.masked_select(mask_arr)
        tensor_other = tensor_other.masked_select(mask_arr)

    return torch.equal(tensor, tensor_other)




def get_accuracy(self,targets, outputs, k=1, ignore_index=None):
    """ Get the accuracy top-k accuracy between two tensors.

    Args:
      targets (1 - 2D :class:`torch.Tensor`): Target or true vector against which to measure
          saccuracy
      outputs (1 - 3D :class:`torch.Tensor`): Prediction or output vector
      ignore_index (int, optional): Specifies a target index that is ignored

    Returns:
      :class:`tuple` consisting of accuracy (:class:`float`), number correct (:class:`int`) and
      total (:class:`int`)

    Example:

        &gt;&gt;&gt; import torch
        &gt;&gt;&gt; from torchnlp.metrics import get_accuracy
        &gt;&gt;&gt; targets = torch.LongTensor([1, 2, 3, 4, 5])
        &gt;&gt;&gt; outputs = torch.LongTensor([1, 2, 2, 3, 5])
        &gt;&gt;&gt; accuracy, n_correct, n_total = get_accuracy(targets, outputs, ignore_index=3)
        &gt;&gt;&gt; accuracy
        0.8
        &gt;&gt;&gt; n_correct
        4
        &gt;&gt;&gt; n_total
        5
    """
    n_correct = 0.0
    targets, outputs=targets.to(self.device), outputs.to(self.device)
</code></pre>
<h1>print(targets, outputs)</h1>
<pre><code>    for target, output in zip(targets, outputs):
        if not torch.is_tensor(target) or self.is_scalar(target):
            target = torch.LongTensor([target]).to(self.device)

        if not torch.is_tensor(output) or self.is_scalar(output):
            output = torch.LongTensor([[output]]).to(self.device)

        predictions = output.topk(k=min(k, len(output)), dim=0)[0]
</code></pre>
<h1>print(predictions)</h1>
<pre><code>        for prediction in predictions:
            if self.torch_equals_ignore_index(
                    target.squeeze(), prediction.squeeze(), ignore_index=ignore_index):
                n_correct += 1
                break

    return n_correct / len(targets), int(n_correct), len(targets)



def get_token_accuracy(self,targets, outputs, ignore_index=None):
    """ Get the accuracy token accuracy between two tensors.

    Args:
      targets (1 - 2D :class:`torch.Tensor`): Target or true vector against which to measure
          saccuracy
      outputs (1 - 3D :class:`torch.Tensor`): Prediction or output vector
      ignore_index (int, optional): Specifies a target index that is ignored

    Returns:
      :class:`tuple` consisting of accuracy (:class:`float`), number correct (:class:`int`) and
      total (:class:`int`)

    Example:

        &gt;&gt;&gt; import torch
        &gt;&gt;&gt; from torchnlp.metrics import get_token_accuracy
        &gt;&gt;&gt; targets = torch.LongTensor([[1, 1], [2, 2], [3, 3]])
        &gt;&gt;&gt; outputs = torch.LongTensor([[1, 1], [2, 3], [4, 4]])
        &gt;&gt;&gt; accuracy, n_correct, n_total = get_token_accuracy(targets, outputs, ignore_index=3)
        &gt;&gt;&gt; accuracy
        0.75
        &gt;&gt;&gt; n_correct
        3.0
        &gt;&gt;&gt; n_total
        4.0
     """
    n_correct = 0.0
    n_total = 0.0
    targets, outputs=targets.to(self.device), outputs.to(self.device)
    for target, output in zip(targets, outputs):
        if not torch.is_tensor(target) or self.is_scalar(target):
            target = torch.LongTensor([target])

        if not torch.is_tensor(output) or self.is_scalar(output):
            output = torch.LongTensor([[output]])

        if len(target.size()) != len(output.size()):
            prediction = output.max(dim=0)[0].view(-1)
        else:
            prediction = output

        if ignore_index is not None:
            mask = target.ne(ignore_index)
            n_correct += prediction.eq(target).masked_select(mask).sum().item()
            n_total += mask.sum().item()
        else:
            n_total += len(target)
            n_correct += prediction.eq(target).sum().item()

    return n_correct / n_total, n_correct, n_total
</code></pre>
Metrics=NlpMetrics(device="cuda")

targets = torch.LongTensor([1, 2, 3, 4, 5]).cuda()
outputs = torch.LongTensor([1, 2, 2, 3, 5]).cuda()
accuracy, n_correct, n_total = Metrics.get_accuracy(targets, outputs, ignore_index=3)
accuracy


Tags: